
An Algorithm for
Multi-Unit
Combinatorial Auctions

Kevin Leyton-Brown
Yoav Shoham

Moshe Tennenholtz

Computer Science Dept.
Stanford University

thanks also to Shobha Venkataraman

Combinatorial Auctions
Mechanisms that allow bidders to explicitly indicate
complementarities and substitutabilities

many goods are auctioned simultaneously
bids name an arbitrary bundle and a price offer
bidders may submit multiple bids

if desired, some bids may be mutually exclusive
otherwise, more than one of a bidder’s bids may win

Benefit: less risk for bidders
won’t win a subset of a bundle for more than it is worth to them
can request multiple mutually-exclusive bundles
More efficient / higher revenue

no need to hedge bids or restrict bidding to a single bundle

Multi-Unit CA’s
Sometimes a set of goods are identical

traditionally, bidders have no way to compactly
represent indifference between members of the set

instead, they must enumerate bundles between which they
are indifferent
this can require a huge number of bids

Multi-Unit CA
set of identical goods: a single multi-unit good

in general, consider all goods to have a fixed number of units

bids specify goods, number of units for each good, a
price offer for the whole package

Winner Determination
Auctioneer’s task:

given a set of bids, find the revenue-maximizing
subset of these bids allocating no more than the
maximum number of units for each good

We can handle XOR with “dummy goods”
unique virtual goods with one unit
add a dummy good to every bid in an XOR set
now at most one bid from each set can be satisfied

Same winner-determination procedure used by:
first-price combinatorial auction
generalized Vickrey auction
various ascending auction mechanisms

Computational Problem
Unfortunately, winner determination is NP-Hard,
even with only one unit per good

Responses to intractability
approximation
restrict bids (tractable subcase)
find optimal solution anyway

Benefits of finding optimal solution
constant-bounded approximation is still intractable
bidders’ strategies affected by approximation
restriction can prevent bidders from expressing full
preferences

Finding Optimal Solution
All previously-published work on CA’s has
concerned single-unit case
A natural solution: mixed-integer
programming

rich history
commercial packages (CPLEX)

CAMUS
Combinatorial Auction Multi-Unit Search

branch and bound search
structure the search space

avoid considering impossible allocations
efficient upper-bound function for pruning

enhancements
preprocessing dominated bids
dynamic programming
caching to improve tightness of upper-bound

heuristics
maximize effectiveness of pruning: upper bound
find good allocations quickly: lower bound

A generalization of our CASS algorithm (1999)

First: CAMUS/CPLEX comparison
Necessary to use artificial data for testing

used a distribution from our new paper
(to appear at EC-00)
aims to model bidding in real-world domains

Railroad Shipping Domain: Railroad Graph
nodes: cities
edges: railroad link between cities
edge weights: link capacity

Railroad Distribution
Randomly generate a graph

random num units per edge: [1, max_units_per_good]

Create a new bidder
randomly choose start and end cities,
number of units to ship
valuation for route: random proportional to the
distance, superadditive in number of units
generate substitutable bids for all bundles of edges
where valuation > cost of shipping (c * distance)
price offer: valuation – cost, rounded to integer

Railroad Distribution: Example

Parameters: num_cities = 5.3 * goods + 3.5, initial_connections = 2, building_penalty = 2.7,
num_building_paths = (num_cities)²/4, shipping_cost_factor = 1.1,

max_bid_set_size = 8, max_cap = 20, additivity = 0.2.

10 goods:
CAMUS, CPLEX, Min Performance

0.1

1

10

100

1000

10000

100000

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

Number of Bids

A
ve

ra
ge

 o
ve

r 1
0

Tr
ia

ls
 (s

)

CAMUS - 10 CPLEX - 10 Min - 10

12 goods:
CAMUS, CPLEX, Min Performance

0.1

1

10

100

1000

10000

100000

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

Number of Bids

A
ve

ra
ge

 o
ve

r 1
0

Tr
ia

ls
 (s

)

CAMUS - 12 CPLEX - 12 Min - 12

CAMUS Implementation: Search
Depth-First Search on allocations

begin with empty allocation
add bids to current partial allocation until
complete; backtrack

Branch and Bound Search
lower bound: best allocation observed so far
upper bound: revenue of current partial
allocation + overestimate of revenue from
unallocated units
when upper bound ≤ lower bound, backtrack

Structure the Search Space
Partition the bids into bins

one bin for each good
each bid belongs to the bin corresponding to its
lowest-order good

After adding a bid, move to the bin for the
lowest-order good with unallocated units

this may be the bin we just left (multi-unit!)
create a subbin of the current bin and keep searching
subbin: include only higher-order bids than the last bid
chosen from this bin

any bids that we skip are guaranteed to conflict with
the current partial allocation

Upper Bound Function h(g,i,π)
An overestimate of the revenue that can be achieved
from the remaining units of good g

given that the search is in bin i and has partial allocation π
precompute lists for all g, i:

each list: all bids for units of good g in bin i or beyond
sorted in descending order of average price per unit (APPU)

Let b be first bid in list i that doesn’t conflict with π
b’s contribution to the overestimate:
APPU(b) * min(unitsi(b), units_neededi)
if more units are still needed, keep moving down the list and find
another non-conflicting bid; repeat

Why does this work? Please see our paper…

Dominated Bids
For each pair of bids (b1, b2), where:

price(b1) ≥ price(b2)
for all goods j, unitsj(b1) ≤ unitsj (b2)

b2 will not win unless b1 also wins
store b2 as a “child” of b1

only consider adding b2 after adding b1

if unitsj(b1) + unitsj (b2) ≥ maxunitsj for any j
we will never add b2: delete it

Dynamic Programming
In some auctions, singleton bids will be relatively
common

Additionally, singleton bids can be computationally
expensive to consider: can lead to deep searches

Dynamic programming preprocessing:
find the optimal set of singleton bids requesting from
1 to maxunitsj, for each good j
in search, only ever consider the optimal singleton set
that consumes all remaining units of a good

Caching
It is possible to allocate the same number of
units of the same goods in more than one way

the search beyond this point is always the same
store the results of search in a hash table, then reuse
them if we get to the same point again

most searches are pruned before they reach a full allocation,
so we can’t store the best allocation in the cache

use the cache to store upper bounds
only store the results that involved non-negligible cost to
compute
cache upper bounds often tighter than h()

cache can be seen as learning a better h()
a tighter upper bound

Good-Ordering Heuristic
designate as good #1 the good i that minimizes
(numbidsi · maxunitsi) / (avgunitsi)

minimize number of bids in low-order bins
reduce branching

minimize number of units of goods in low-order bins
move quickly past the first bins, where the pruning function is
least informative

maximize total number of units requested by bids in
low-order bins

move quickly to high-order bins

remove bids involving good #1 and repeat for
good #2, etc.

Bid-Ordering Heuristic
Order bids within bin so we encounter
most promising bids first

improve lower bound
Sort bids b in descending order of
APPU(b) + h(π ∪ b)

APPU(b) is a measure of b’s promise
h() is a measure of how promising the
unallocated units are, given partial allocation

This ordering is dynamic, because
h(π ∪ b) depends on the past search

CAMUS vs. CPLEX
The jury’s still out

CAMUS outperforms CPLEX on the railroad distribution
we’ve seen other cases where CPLEX is better
what are the strengths of each approach?

Choice of distribution is fundamental to testing
can we agree on distributions that capture the
patterns we expect from real-world bidding?
Towards a Universal Test Suite for Combinatorial
Auctions, http://robotics.stanford.edu/CATS
we’d love to get your feedback on this!

http://robotics.stanford.edu/CATS

Conclusion
CAMUS is a general-purpose algorithm for finding the
winners of multi-unit combinatorial auctions
A branch and bound search:

structuring the search space
preprocessing
dynamic programming
caching
heuristics for ordering goods and bids

Promising performance when compared to CPLEX on our
railroad distribution

more work needed to understand strengths and weaknesses of
each approach on other real-world CA distributions

	An Algorithm forMulti-UnitCombinatorial Auctions
	Combinatorial Auctions
	Multi-Unit CA’s
	Winner Determination
	Computational Problem
	Finding Optimal Solution
	CAMUS
	First: CAMUS/CPLEX comparison
	Railroad Distribution
	Railroad Distribution: Example
	10 goods:CAMUS, CPLEX, Min Performance
	12 goods:CAMUS, CPLEX, Min Performance
	CAMUS Implementation: Search
	Structure the Search Space
	Upper Bound Function h(g,i,)
	Dominated Bids
	Dynamic Programming
	Caching
	Good-Ordering Heuristic
	Bid-Ordering Heuristic
	CAMUS vs. CPLEX
	Conclusion

