An Algorithm for Multi-Unit Combinatorial Auctions

Kevin Leyton-Brown Yoav Shoham Moshe Tennenholtz

Computer Science Dept. Stanford University

thanks also to Shobha Venkataraman

Combinatorial Auctions

- Mechanisms that allow bidders to explicitly indicate complementarities and substitutabilities
 - many goods are auctioned simultaneously
 - bids name an arbitrary bundle and a price offer
 - bidders may submit multiple bids
 - if desired, some bids may be mutually exclusive
 - otherwise, more than one of a bidder's bids may win
- Benefit: less risk for bidders
 - won't win a subset of a bundle for more than it is worth to them
 - can request multiple mutually-exclusive bundles
 - More efficient / higher revenue
 - no need to hedge bids or restrict bidding to a single bundle

Multi-Unit CA's

- Sometimes a set of goods are identical
 - traditionally, bidders have no way to compactly represent indifference between members of the set
 - instead, they must enumerate bundles between which they are indifferent
 - this can require a huge number of bids
- Multi-Unit CA
 - set of identical goods: a single multi-unit good
 - in general, consider all goods to have a fixed number of units
 - bids specify goods, number of units for each good, a price offer for the whole package

Winner Determination

- Auctioneer's task:
 - given a set of bids, find the revenue-maximizing subset of these bids allocating no more than the maximum number of units for each good
- We can handle XOR with "dummy goods"
 - unique virtual goods with one unit
 - add a dummy good to every bid in an XOR set
 - now at most one bid from each set can be satisfied
- Same winner-determination procedure used by:
 - first-price combinatorial auction
 - generalized Vickrey auction
 - various ascending auction mechanisms

Computational Problem

- Unfortunately, winner determination is NP-Hard, even with only one unit per good
 - Responses to intractability
 - approximation
 - restrict bids (tractable subcase)
 - find optimal solution anyway
- Benefits of finding optimal solution
 - constant-bounded approximation is still intractable
 - bidders' strategies affected by approximation
 - restriction can prevent bidders from expressing full preferences

Finding Optimal Solution

- All previously-published work on CA's has concerned single-unit case
- A natural solution: mixed-integer programming
 - rich history
 - commercial packages (CPLEX)

CAMUS

Combinatorial Auction Multi-Unit Search

- branch and bound search
- structure the search space
 - avoid considering impossible allocations
 - efficient upper-bound function for pruning
- enhancements
 - preprocessing dominated bids
 - dynamic programming
 - caching to improve tightness of upper-bound
- heuristics
 - maximize effectiveness of pruning: upper bound
 - find good allocations quickly: lower bound

A generalization of our CASS algorithm (1999)

First: CAMUS/CPLEX comparison

Necessary to use artificial data for testing

- used a distribution from our new paper (to appear at EC-00)
- aims to model bidding in real-world domains
- Railroad Shipping Domain: Railroad Graph
 - nodes: cities
 - edges: railroad link between cities
 - edge weights: link capacity

Railroad Distribution

- Randomly generate a graph
 - random num units per edge: [1, max_units_per_good]
- Create a new bidder
 - randomly choose start and end cities, number of units to ship
 - valuation for route: random proportional to the distance, superadditive in number of units
 - generate substitutable bids for all bundles of edges where valuation > cost of shipping (c * distance)
 - price offer: valuation cost, rounded to integer

Railroad Distribution: Example

num_building_paths = (num_cities)²/4, shipping_cost_factor = 1.1, max_bid_set_size = 8, max_cap = 20, additivity = 0.2.

← CAMUS - 10 — CPLEX - 10 — ← Min - 10

Average over 10 Trials (s)

← CAMUS - 12 ← CPLEX - 12 ← Min - 12

CAMUS Implementation: Search

Depth-First Search on allocations

- begin with empty allocation
- add bids to current partial allocation until complete; backtrack
- Branch and Bound Search
 - Iower bound: best allocation observed so far
 - upper bound: revenue of current partial allocation + overestimate of revenue from unallocated units
 - when upper bound ≤ lower bound, backtrack

Structure the Search Space

Partition the bids into bins

- one bin for each good
- each bid belongs to the bin corresponding to its lowest-order good
- After adding a bid, move to the bin for the lowest-order good with unallocated units
 - this may be the bin we just left (multi-unit!)
 - create a *subbin* of the current bin and keep searching
 - subbin: include only higher-order bids than the last bid chosen from this bin
 - any bids that we skip are guaranteed to conflict with the current partial allocation

Upper Bound Function $h(g, i, \pi)$

- An overestimate of the revenue that can be achieved from the remaining units of good g
 - given that the search is in bin i and has partial allocation π
 - precompute lists for all g, i:
 - each list: all bids for units of good g in bin i or beyond
 - sorted in descending order of average price per unit (APPU)
- Let b be first bid in list i that doesn't conflict with π
 - b's contribution to the overestimate:
 APPU(b) * min(units_i(b), units_needed_i)
 - if more units are still needed, keep moving down the list and find another non-conflicting bid; repeat
- Why does this work? Please see our paper...

Dominated Bids

- For each pair of bids (b_1, b_2) , where:
 - $price(b_1) \ge price(b_2)$
 - for all goods j, $units_j(b_1) \le units_j(b_2)$
- b_2 will not win unless b_1 also wins
 - store b₂ as a "child" of b₁
 - only consider adding b_2 after adding b_1
 - if units_j(b₁) + units_j(b₂) ≥ maxunits_j for any j
 we will never add b₂: delete it

Dynamic Programming

- In some auctions, singleton bids will be relatively common
 - Additionally, singleton bids can be computationally expensive to consider: can lead to deep searches
- Dynamic programming preprocessing:
 - find the optimal set of singleton bids requesting from
 1 to maxunits_j, for each good j
 - in search, only ever consider the optimal singleton set that consumes all remaining units of a good

Caching

- It is possible to allocate the same number of units of the same goods in more than one way
 - the search beyond this point is always the same
 - store the results of search in a hash table, then reuse them if we get to the same point again
 - most searches are pruned before they reach a full allocation, so we can't store the best allocation in the cache
 - use the cache to store upper bounds
 - only store the results that involved non-negligible cost to compute
 - cache upper bounds often tighter than h()
 - cache can be seen as learning a better h()
 - a tighter upper bound

Good-Ordering Heuristic

- designate as good #1 the good *i* that minimizes (numbids_i · maxunits_i) / (avgunits_i)
 - minimize number of bids in low-order bins
 - reduce branching
 - minimize number of units of goods in low-order bins
 - move quickly past the first bins, where the pruning function is least informative
 - maximize total number of units requested by bids in low-order bins
 - move quickly to high-order bins
- remove bids involving good #1 and repeat for good #2, etc.

Bid-Ordering Heuristic

- Order bids within bin so we encounter most promising bids first
 - improve lower bound
- Sort bids *b* in descending order of APPU(*b*) + $h(\pi \cup b)$
 - APPU(*b*) is a measure of *b*'s promise
 - h() is a measure of how promising the unallocated units are, given partial allocation
 - This ordering is dynamic, because $h(\pi \cup b)$ depends on the past search

CAMUS vs. CPLEX

- The jury's still out
 - CAMUS outperforms CPLEX on the railroad distribution
 - we've seen other cases where CPLEX is better
 - what are the strengths of each approach?

Choice of distribution is fundamental to testing

- can we agree on distributions that capture the patterns we expect from real-world bidding?
- Towards a Universal Test Suite for Combinatorial Auctions, <u>http://robotics.stanford.edu/CATS</u>
- we'd love to get your feedback on this!

Conclusion

- CAMUS is a general-purpose algorithm for finding the winners of multi-unit combinatorial auctions
- A branch and bound search:
 - structuring the search space
 - preprocessing
 - dynamic programming
 - caching
 - heuristics for ordering goods and bids
- Promising performance when compared to CPLEX on our railroad distribution
 - more work needed to understand strengths and weaknesses of each approach on other real-world CA distributions