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Combinatorial Auctions
Mechanisms that allow bidders to explicitly indicate 
complementarities and substitutabilities

many goods are auctioned simultaneously
bids name an arbitrary bundle and a price offer
bidders may submit multiple bids

if desired, some bids may be mutually exclusive
otherwise, more than one of a bidder’s bids may win

Benefit: less risk for bidders
won’t win a subset of a bundle for more than it is worth to them
can request multiple mutually-exclusive bundles
More efficient / higher revenue

no need to hedge bids or restrict bidding to a single bundle



Multi-Unit CA’s
Sometimes a set of goods are identical

traditionally, bidders have no way to compactly 
represent indifference between members of the set

instead, they must enumerate bundles between which they 
are indifferent
this can require a huge number of bids

Multi-Unit CA
set of identical goods: a single multi-unit good

in general, consider all goods to have a fixed number of units

bids specify goods, number of units for each good, a 
price offer for the whole package



Winner Determination
Auctioneer’s task:

given a set of bids, find the revenue-maximizing 
subset of these bids allocating no more than the 
maximum number of units for each good

We can handle XOR with “dummy goods”
unique virtual goods with one unit
add a dummy good to every bid in an XOR set
now at most one bid from each set can be satisfied

Same winner-determination procedure used by:
first-price combinatorial auction
generalized Vickrey auction
various ascending auction mechanisms



Computational Problem
Unfortunately, winner determination is NP-Hard, 
even with only one unit per good

Responses to intractability
approximation
restrict bids (tractable subcase)
find optimal solution anyway

Benefits of finding optimal solution
constant-bounded approximation is still intractable
bidders’ strategies affected by approximation
restriction can prevent bidders from expressing full 
preferences



Finding Optimal Solution
All previously-published work on CA’s has 
concerned single-unit case
A natural solution: mixed-integer 
programming

rich history
commercial packages (CPLEX)



CAMUS
Combinatorial Auction Multi-Unit Search

branch and bound search
structure the search space

avoid considering impossible allocations
efficient upper-bound function for pruning

enhancements
preprocessing dominated bids
dynamic programming
caching to improve tightness of upper-bound 

heuristics
maximize effectiveness of pruning: upper bound 
find good allocations quickly: lower bound

A generalization of our CASS algorithm (1999)



First: CAMUS/CPLEX comparison
Necessary to use artificial data for testing

used a distribution from our new paper 
(to appear at EC-00)
aims to model bidding in real-world domains

Railroad Shipping Domain: Railroad Graph
nodes: cities
edges: railroad link between cities
edge weights: link capacity



Railroad Distribution
Randomly generate a graph

random num units per edge: [1, max_units_per_good]

Create a new bidder
randomly choose start and end cities, 
number of units to ship
valuation for route: random proportional to the 
distance, superadditive in number of units
generate substitutable bids for all bundles of edges 
where valuation > cost of shipping (c * distance)
price offer: valuation – cost, rounded to integer



Railroad Distribution: Example

Parameters: num_cities = 5.3 * goods + 3.5, initial_connections = 2, building_penalty = 2.7, 
num_building_paths = (num_cities)²/4, shipping_cost_factor = 1.1, 

max_bid_set_size = 8, max_cap = 20, additivity = 0.2.



10 goods:
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12 goods:
CAMUS, CPLEX, Min Performance
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CAMUS Implementation: Search
Depth-First Search on allocations

begin with empty allocation
add bids to current partial allocation until 
complete; backtrack

Branch and Bound Search
lower bound: best allocation observed so far
upper bound: revenue of current partial 
allocation + overestimate of revenue from 
unallocated units
when upper bound ≤ lower bound, backtrack



Structure the Search Space
Partition the bids into bins

one bin for each good
each bid belongs to the bin corresponding to its 
lowest-order good

After adding a bid, move to the bin for the 
lowest-order good with unallocated units

this may be the bin we just left (multi-unit!)
create a subbin of the current bin and keep searching
subbin: include only higher-order bids than the last bid 
chosen from this bin

any bids that we skip are guaranteed to conflict with 
the current partial allocation



Upper Bound Function h(g,i,π)
An overestimate of the revenue that can be achieved 
from the remaining units of good g

given that the search is in bin i and has partial allocation π
precompute lists for all g, i:

each list: all bids for units of good g in bin i or beyond
sorted in descending order of average price per unit (APPU)

Let b be first bid in list i that doesn’t conflict with π
b’s contribution to the overestimate: 
APPU(b) * min(unitsi(b), units_neededi)
if more units are still needed, keep moving down the list and find 
another non-conflicting bid; repeat

Why does this work?  Please see our paper…



Dominated Bids
For each pair of bids (b1, b2), where:

price(b1) ≥ price(b2)
for all goods j, unitsj(b1) ≤ unitsj (b2)

b2 will not win unless b1 also wins
store b2 as a “child” of b1

only consider adding b2 after adding b1

if unitsj(b1) + unitsj (b2) ≥ maxunitsj for any j
we will never add b2: delete it



Dynamic Programming
In some auctions, singleton bids will be relatively 
common

Additionally, singleton bids can be computationally 
expensive to consider: can lead to deep searches

Dynamic programming preprocessing:
find the optimal set of singleton bids requesting from 
1 to maxunitsj, for each good j
in search, only ever consider the optimal singleton set 
that consumes all remaining units of a good



Caching
It is possible to allocate the same number of 
units of the same goods in more than one way

the search beyond this point is always the same
store the results of search in a hash table, then reuse 
them if we get to the same point again

most searches are pruned before they reach a full allocation, 
so we can’t store the best allocation in the cache

use the cache to store upper bounds
only store the results that involved non-negligible cost to 
compute
cache upper bounds often tighter than h( )

cache can be seen as learning a better h( )
a tighter upper bound



Good-Ordering Heuristic
designate as good #1 the good i that minimizes 
(numbidsi · maxunitsi) / (avgunitsi)

minimize number of bids in low-order bins
reduce branching

minimize number of units of goods in low-order bins
move quickly past the first bins, where the pruning function is 
least informative

maximize total number of units requested by bids in 
low-order bins 

move quickly to high-order bins

remove bids involving good #1 and repeat for 
good #2, etc.



Bid-Ordering Heuristic
Order bids within bin so we encounter 
most promising bids first

improve lower bound
Sort bids b in descending order of 
APPU(b) + h(π ∪ b)

APPU(b) is a measure of b’s promise
h( ) is a measure of how promising the 
unallocated units are, given partial allocation

This ordering is dynamic, because 
h(π ∪ b) depends on the past search



CAMUS vs. CPLEX
The jury’s still out

CAMUS outperforms CPLEX on the railroad distribution
we’ve seen other cases where CPLEX is better
what are the strengths of each approach?

Choice of distribution is fundamental to testing 
can we agree on distributions that capture the 
patterns we expect from real-world bidding?
Towards a Universal Test Suite for Combinatorial 
Auctions, http://robotics.stanford.edu/CATS
we’d love to get your feedback on this!

http://robotics.stanford.edu/CATS


Conclusion
CAMUS is a general-purpose algorithm for finding the 
winners of multi-unit combinatorial auctions
A branch and bound search:

structuring the search space
preprocessing
dynamic programming
caching
heuristics for ordering goods and bids

Promising performance when compared to CPLEX on our 
railroad distribution

more work needed to understand strengths and weaknesses of 
each approach on other real-world CA distributions
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